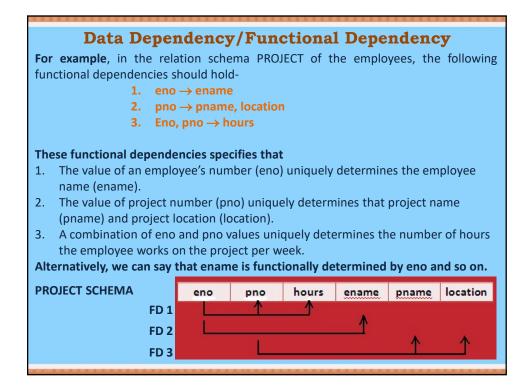
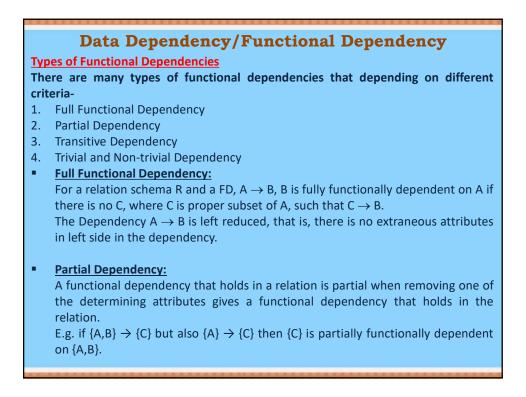


A functional depen relational database other attribute is ca	table. One of the attr	on betwo ibutes is or each	een tw called value c	Dependency to attributes of the same the determinant and the of the determinant there is
determines B and g be expressed as B is		nis as A - <i>ed by</i> A.	> B. Tł	ve say that A functionally ne symbols A & B can also one value of B.
				1
	The following table illustra	tes A	=> B:	
		Α	В	
		1	1	
		2	4	
		3	9	
		4	16	
		2	4	
		7	9	

Α
1
2
3
4
2
3
7


Data Dependency/Functional Dependency


A functional dependency denoted (FD) is denoted by $X \rightarrow Y$, between two sets of attributes X and Y that are subset of relation R specifies a constraint on the tuples that can form a relation state of r of R. The constraint is that, for any two tuple t1 and t2 in r that have t1[X] = t2[X], we must have t1[Y] = t2[Y].

It means that the values of the Y of a tuple in r depend upon or determined by, the value of X component. Alternatively, the values of X component of a tuple uniquely (or Functionally) determine the values of the Y component.

In other words, there is a functional dependency from X to Y or that Y is functionally dependent on X.

Thus, X functionally determines Y in a relation schema R if and only if, whenever two tuples of r(R) agree on their X-value, they must necessarily agree on their Y value.

Data Dependency/Functional Dependency

Partial Dependency:

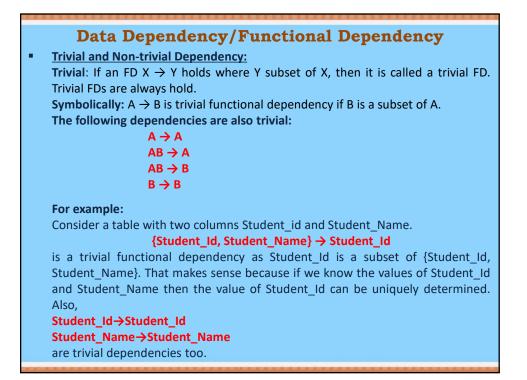
Partial Dependency is a form of Functional dependency that holds on a set of attributes. It is about the complete dependency of a right hand side attribute on one of the left hand side attributes. In a functional dependency XY \rightarrow Z, if Z (RHS attribute) can be uniquely identified by one of the LHS attributes, then the functional dependency is partial dependency.

Example:

Let us assume a relation R with attributes A, B, C, and D. Also, assume that the set of functional dependencies F that hold on R as follows;

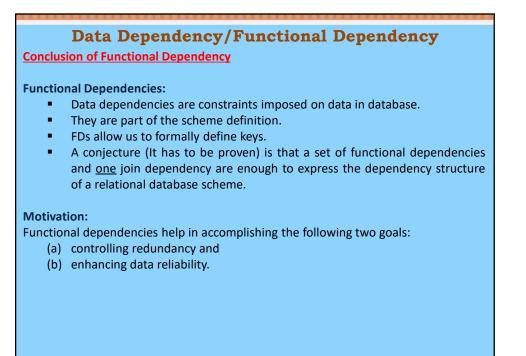
$F = \{A \rightarrow B, D \rightarrow C\}.$

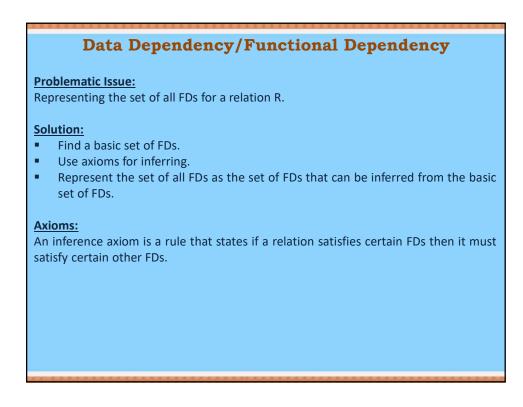
From set of attributes F, we can derive the primary key. For R, the key can be (A,D), a composite primary key. That means, $AD \rightarrow BC$, AD can uniquely identify B and C. But, for this case A and D is not required to identify B or C uniquely. To identify B, attribute A is enough. Likewise, to identify C, attribute D is enough. The functional dependencies $AD \rightarrow B$ or $AD \rightarrow C$ are called as Partial functional dependencies.

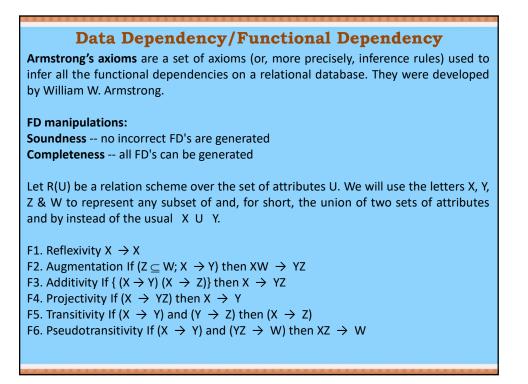

Data Dependency/Functional Dependency

 <u>Transitive Dependency</u>: The functional dependency follows the mathematical property of *transitivity*, which states that if A=B and B=C, then A=C. Because ItemNo determines CategoryID, which in turn determines CategoryName and CategoryManager, the relation contains a transitive dependency.

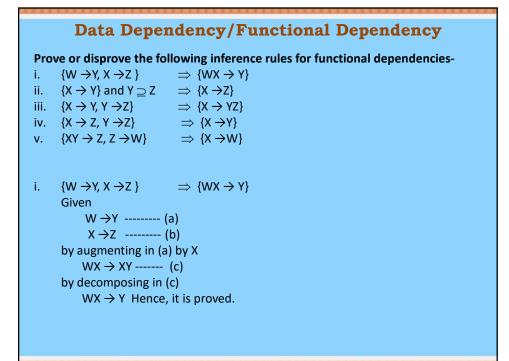
ItemNo \rightarrow Title, Price, CategoryID CategoryId \rightarrow CategoryName, CategoryManager


Transitive dependencies occur when there is an indirect relationship that causes a <u>functional dependency</u>.

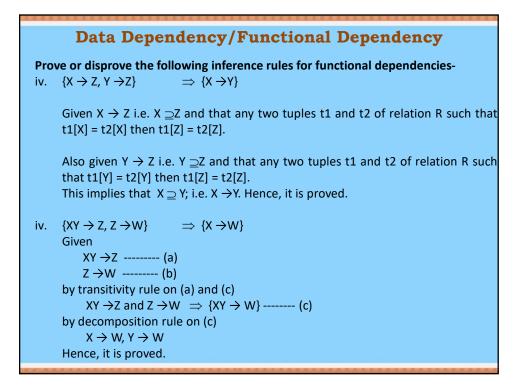

Examples: For example, "A -> C" is a transitive dependency when it is true only because both "A -> B" and "B -> C" are true.

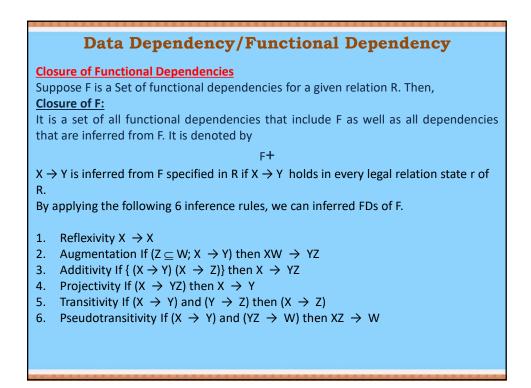


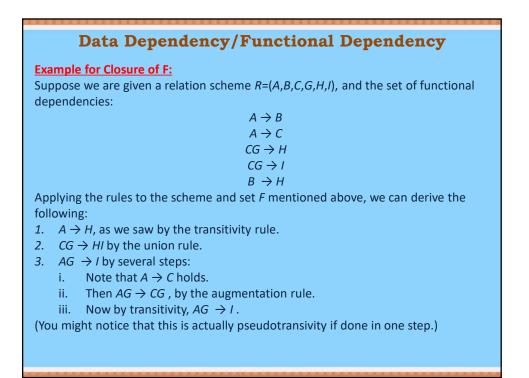
Data Dependency/Functional Dependency
Trivial and Non-trivial Dependency:
Non-trivial : If an FD X \rightarrow Y holds where Y is not subset of X, then it is called non-
trivial FD.
For example:
An employee table with three attributes:
emp_id, emp_name, emp_address.
The following functional dependencies are non-trivial:
<pre>emp_id → emp_name (emp_name is not a subset of emp_id) emp_id → emp_address (emp_address is not a subset of emp_id)</pre>
On the other hand, the following dependencies are trivial:
<pre>emp_id, emp_name → emp_name emp_name is a subset of {emp_id, emp_name}</pre>
Completely non-trivial : If an FD X \rightarrow Y holds where x intersect Y = Φ , is said to be completely non-trivial FD.

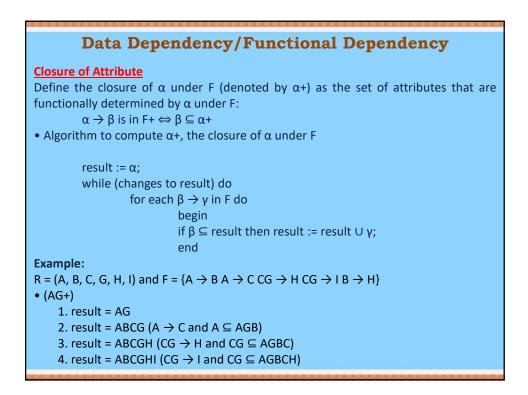

Prepared by: Dr. Mukesh Bathre








Axiom Name	Axiom	Example
Reflexivity	if a is set of attributes, b \subseteq a, then a \rightarrow b	SSN,Name \rightarrow SSN
Augmentation	if $a \rightarrow b$ holds and c is a set of attributes, then $ca \rightarrow cb$	SSN \rightarrow Name then SSN,Phone \rightarrow Name, Phone
Transitivity	if a \rightarrow b holds and b \rightarrow c holds, then a \rightarrow c holds	SSN →Zip and Zip→City then SSN →City
Union or Additivity *	if $a \rightarrow b$ and $a \rightarrow c$ holds then $a \rightarrow bc$ holds	SSN→Name and SSN→Zip then SSN→Name,Zip
Decomposition or Projectivity*	if a \rightarrow bc holds then a \rightarrow b and a \rightarrow c holds	SSN→Name,Zip then SSN→Name and SSN→Zip
Pseudotransitivity*	if a \rightarrow b and cb \rightarrow d hold then ac \rightarrow d holds	Address \rightarrow Project and Date \rightarrow Amount then Address,Date \rightarrow Amount
(NOTE)	ab $ ightarrow$ c does NOT imply a $ ightarrow$ b and b $ ightarrow$ c	



Data Dependency/Functional Dependency	
Example for Closure of F: Assume that there are 4 attributes A, B, C, D, and that $F = \{A \rightarrow B, B \rightarrow C\}$. Then, F + includes all the following:	
FDs: A \rightarrow A, A \rightarrow B, A \rightarrow C, B \rightarrow B, B \rightarrow C, C \rightarrow C, D \rightarrow D, AB \rightarrow A, AB \rightarrow B, AB \rightarrow C, AC \rightarrow A, AC \rightarrow B, AC \rightarrow C, AD \rightarrow A, AD \rightarrow B, AD \rightarrow C, AD \rightarrow D, BC \rightarrow B, BC \rightarrow C, BD \rightarrow B, BD \rightarrow C, BD \rightarrow D, CD \rightarrow C, CD \rightarrow D, ABC \rightarrow A, ABC \rightarrow B, ABC \rightarrow C, ABD \rightarrow A, ABD \rightarrow B ABD \rightarrow C, ABD \rightarrow D, BCD \rightarrow B, BCD \rightarrow C, BCD \rightarrow D, ABCD \rightarrow A, ABCD \rightarrow B, ABCD \rightarrow C, ABCD \rightarrow D.	,
	-

Example for Closure of F: Assume that there are 4 attributes A, B, C, D, and that $F = \{A \rightarrow B, B \rightarrow C\}$. To compute F+, we first get: $A + = AB + = AC + = ABC + = \{A, B, C\}$ $B + = BC + = \{B, C\}$ $C + = \{C\}$ $D + = \{D\}$ $AD + = \{A, D\}$ $BC + = \{B, C\}$ $BD + = BCD + = \{B, C, D\}$ $ABD + = ABCD + = \{A, B, C, D\}$ $ACD + = \{A, C, D\}$ It is easy to generate the FDs in F + from the closures of the above attribute sets.

Finding Candidate Key

Let F be a set of FDs, and R a relation.

A candidate key is a set X of attributes in R such that

- X + includes all the attributes in R.
- There is no proper subset Y of X such that Y + includes all the attributes in R.

Note: A proper subset Y is a subset of X such that Y = X (i.e., X has at least one element not in Y).

Example.

Consider a table R(A, B, C, D), and that F = {A \rightarrow B, B \rightarrow C}.

A is not a candidate key, because $A + = \{A, B, C\}$ which does not include D. ABD is not a candidate key even though $ABD + = \{A, B, C, D\}$. This is because $AD + = \{A, B, C, D\}$, namely, there is a proper subset AD of ABD such that AD+ includes all the attributes. AD is a candidate key.

Data Dependency/Functional Dependency
Finding Candidate Key
Example.
Consider a table R(A, B, C, D, E, F), and that $F = \{A \rightarrow C, C \rightarrow D, D \rightarrow B, E \rightarrow F\}$.
Find all the possible candidate key.
Given $A \rightarrow C$, A determines C
$C \rightarrow D$, C determines D
$D \rightarrow B$, D determines B
$E \rightarrow F E$ determines F
Now, the easiest way is to find which attributes are not determined. In this example, A and E are not determined. Then, find out the closure of (AE)+.
(AE) + = <u>A</u> E
= ACE
= ACDE
= ACDBE
= ACDBEF
Closure of AE has all the attributes. Thus, AE is a candidate key. In this way, we can
find out more candidate keys for this problem.

Normalization While designing a database out of an entity-relationship model, the main problem existing in that "raw" database is redundancy. Redundancy is storing the same data item in more one place. A redundancy creates several problems like the following: Extra storage space: storing the same data in many places takes large amount of disk space. Entering same data more than once during data insertion. Deleting data from more than one place during deletion. Modifying data in more than one place. Anomalies may occur in the database if insertion, deletion, modification etc are no done properly. It creates inconsistency and unreliability in the database. To solve this problem, the "raw" database needs to be normalized. This is a step by step process of removing different kinds of redundancy and anomaly at each step. At each step a specific rule is followed to remove specific kind of impurity in order to give the database a slim and clean look.

Normalization

Normalization of Database

Database Normalization is a technique of organizing the data in the database. Normalization is a systematic approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion, Update and Deletion Anomalies. It is a multi-step process that puts data into tabular form by removing duplicated data from the relation tables.

Normalization is used for mainly two purpose,

- Eliminating redundant(useless) data.
- Ensuring data dependencies make sense i.e. data is logically stored.

Un-Normalized Form (UNF)

If a table contains non-atomic values at each row, it is said to be in UNF. An **atomic** value is something that can not be further decomposed. A **non-atomic value**, as the name suggests, can be further decomposed and simplified. Consider the following table:

Emp-Id	Emp-Name	Month	Sales	Bank-Id	Bank-Name
E01	AA	Jan	1000	B01	SBI
		Feb	1200		
		Mar	850		
E02	BB	Jan	2200	B02	UTI
		Feb	2500		
E03	CC	Jan	1700	B01	SBI
		Feb	1800		
		Mar	1850		
		Apr	1725		

In the sample table above, there are multiple occurrences of rows under each key Emp-Id. Although considered to be the primary key, Emp-Id cannot give us the unique identification facility for any single row. Further, each primary key points to a variable length record (3 for E01, 2 for E02 and 4 for E03).

Normalization

Problems without Normalization

If a database design is not perfect, it may contain anomalies, which are like a bad dream for any database administrator. Managing a database with anomalies is next to impossible.

Update anomalies – If data items are scattered and are not linked to each other properly, then it could lead to strange situations. For example, when we try to update one data item having its copies scattered over several places, a few instances get updated properly while a few others are left with old values. Such instances leave the database in an inconsistent state.

Deletion anomalies – We tried to delete a record, but parts of it was left undeleted because of unawareness, the data is also saved somewhere else.

Insert anomalies – We tried to insert data in a record that does not exist at all. Normalization is a method to remove all these anomalies and bring the database to a consistent state.

Normalization Rule

Normalization rule are divided into following normal form.

- First Normal Form
- Second Normal Form
- Third Normal Form
- BCNF
- Fourth Normal Form
- Fifth Normal Form (PJNF)

First Normal Form (1NF)

A relation is in first normal form if it meets the definition of a relation:

- Each attribute (column) value must be a single value only.
- All values for a given attribute (column) must be of the same type.
- Each attribute (column) name must be unique.
- The order of attributes (columns) is insignificant
- No two tuples (rows) in a relation can be identical.
- The order of the tuples (rows) is insignificant.

If you have a *key* defined for the relation, then you can meet the *unique row* requirement.

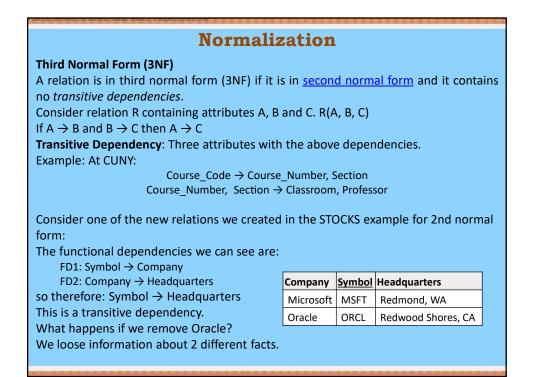
		No	orm	aliz	atio	n		
First Normal Fo	orm (1N	IF)						
A relation is sa	id to be	e in 1NF if	it cont	ains r	no non-a	atomic valu	les and ead	ch row can
provide a uniqu	ue coml	bination of	values	. The	above t	able in UNI	F can be pr	ocessed to
create the follo	wing ta	ble in 1NF.						
	Emp-Id	Emp-Name	Month	Sales	Bank-Id	Bank-Name		
	E01	AA	Jan	1000	B01	SBI	-	
	E01	AA	Feb	1200	B01	SBI		
	E01	AA	Mar	850	B01	SBI		
	E02	BB	Jan	2200	B02	UTI		
	E02	BB	Feb	2500	B02	UTI		
	E03	CC	Jan	1700	B01	SBI		
	E03	CC	Feb	1800	B01	SBI		
	E03	CC	Mar	1850	B01	SBI		
	E03	CC	Apr	1725	B01	SBI		
As you can see this relation decomposed, s	contain	s only ato	omic v	alues				· · · · · · · · · · · · · · · · · · ·

		Nor	malization	L	
	Company	<u>Symbol</u>	Headquarters	<u>Date</u>	Close Price
	Microsoft	MSFT	Redmond, WA	09/07/2013	23.96
				09/08/2013	23.93
Un-Normal Form Table				09/09/2013	24.01
Table	Oracle	ORCL	Redwood Shores, CA	09/07/2013	24.27
				09/08/2013	24.14
				09/09/2013	24.33
		1	1		
	Company	<u>Symbol</u>	Headquarters	<u>Date</u>	Close Price
	Microsoft	MSFT	Redmond, WA	09/07/2013	23.96
	Microsoft	MSFT	Redmond, WA	09/08/2013	23.93
Table in First Normal Form	Microsoft	MSFT	Redmond, WA	09/09/2013	24.01
Normai Form	Oracle	ORCL	Redwood Shores, CA	09/07/2013	24.27
	Oracle	ORCL	Redwood Shores, CA	09/08/2013	24.14
	Oracle	ORCL	Redwood Shores, CA	09/09/2013	24.33

Second Normal Form (2NF)

A relation is said to be in 2NF f if it is already in 1NF and each and every attribute fully depends on the primary key of the relation. Speaking inversely, if a table has some attributes which is not dependent on the primary key of that table, then it is not in 2NF.

Let us explain. Emp-Id is the primary key of the above relation. Emp-Name, Month, Sales and Bank-Name all depend upon Emp-Id. But the attribute Bank-Name depends on Bank-Id, which is not the primary key of the table. So the table is in 1NF, but not in 2NF. If this position can be removed into another related relation, it would come to 2NF.

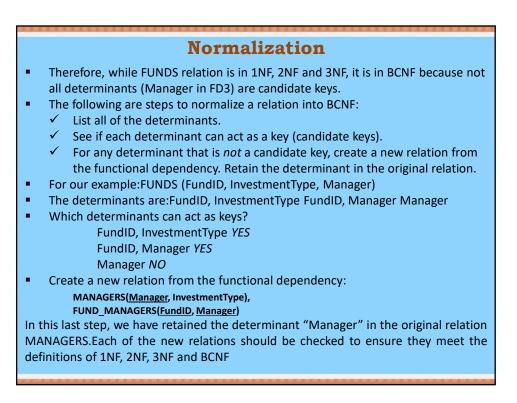

AA AA AA BB	JAN FEB MAR JAN	1000 1200 850 2200	B01 B01 B01 B02
AA BB	MAR	850	B01
BB			-
	JAN	2200	B02
BB	FEB	2500	B02
CC	JAN	1700	B01
CC	FEB	1800	B01
CC	MAR	1850	B01
	ΔΡΒ	1726	B01
		CC MAR CC APR	

Bank-Id	Bank-Name
B01	SBI
B02	UTI

After removing the portion into another relation we store lesser amount of data in two relations without any loss information. There is also a significant reduction in redundancy.

this p vonewr lational riginal lationw remove odel. ample nctional	relation mode "s re start ed for data	s in our el. The STOCKS" ed with	Microsoft Microsoft Microsoft Oracle Oracle	MSFT MSFT	Re Re Re		NA NA NA nores, CA	09/0 09/0 09/0	2 07/2013 08/2013 09/2013 07/2013	23. 23. 24.	.93
lational riginal lation w remove odel. ample	mode "s re start ed for data	el. The STOCKS" ed with rm the	Microsoft Microsoft Oracle Oracle	MSFT MSFT ORCL	Re Re Re	dmond, V dmond, V dwood Sl	NA NA hores, CA	09/0 09/0 09/0	08/2013 09/2013	23. 24.	.93
riginal lation w remove odel. ample	e start ed for data	STOCKS" ed with rm the	Microsoft Oracle Oracle	MSFT ORCL	Re Re	dmond, \ dwood Sl	NA hores, CA	09/ 09/	09/2013	24.	
lation w remove odel. ample	e start ed for data	ed with m the	Oracle Oracle	ORCL	Re	dwood Sl	nores, CA	09/			.01
remove odel. ample	ed for data	rm the	Oracle						07/2013	24.	
ample		and		ORCL	Re	مان به م ما 10					.27
		and				awooa Si	nores, CA	09/	08/2013	24.	.14
nctional		doncios	Oracle	ORCL	Re	dwood Sl	hores, CA	09/	09/2013	24.	.33
r the lations:	two		FD1: Syr	nbol, D	ate				-		e Pric
OMPANY	Relatio	n:								ice	
D2. Sumb		mnany He	adquarte	~c		MSFT	09/07/2	013	23.96		
FD2: Symbol → Company, Headquarters						MSFT	09/08/2	013	23.93		
ompany	<u>Symbol</u>	Headquar	ters			MSFT	09/09/2	013	24.01		
Vicrosoft	MSFT	Redmond	I <i>,</i> WA			ORCL	09/07/2	013	24.27		
Dracle	ORCL	Redwood	Shores, CA			ORCL	09/08/2	013	24.14		
						ORCL	09/09/2	013	24.33		
	ations: MPANY 2: Symbor mpany licrosoft	ations: MPANY Relation 2: Symbol → Co Impany Symbol Norrosoft MSFT	ations: MPANY Relation: 2: Symbol → Company, Headquar Incrosoft MSFT Redmond	ations: MPANY Relation: 2: Symbol → Company, Headquarter mpany <u>Symbol</u> Headquarters licrosoft MSFT Redmond, WA	ations: MPANY Relation: 2: Symbol → Company, Headquarters mpany Symbol Headquarters licrosoft MSFT Redmond, WA	ations: MPANY Relation: 2: Symbol → Company, Headquarters mpany Symbol Headquarters licrosoft MSFT Redmond, WA	Symbol Symbol MSFT MSFT MSFT MSFT MSFT MSFT MSFT MSFT NSFT MSFT NSFT MSFT ORCL Redwood Shores, CA	Symbol Date MPANY Relation: Symbol 2: Symbol → Company, Headquarters MSFT 09/07/2 MsFT 09/07/2 MSFT 09/08/2 MSFT 09/09/2 Date MSFT 0RCL Redwood Shores, CA	Symbol Date MPANY Relation: MSFT 09/07/2013 2: Symbol → Company, Headquarters MSFT 09/08/2013 Incrosoft MSFT Redmond, WA ORCL 09/07/2013 racle ORCL Redwood Shores, CA ORCL 09/08/2013	Symbol Company, Headquarters MPANY Relation: Symbol Date Close Pr MSFT 09/07/2013 23.96 Mpany Symbol Headquarters Microsoft MSFT Redmond, WA racle ORCL Redwood Shores, CA	Symbol Date Close Price MPANY Relation: MSFT 09/07/2013 23.96 Mpany Symbol Headquarters MSFT 09/08/2013 23.93 Mpany Symbol Headquarters MSFT 09/09/2013 24.01 Norcl ORCL 09/07/2013 24.27 ORCL 09/08/2013 24.14

Boyce-Codd Normal Form (BCNF)


- A relation is in BCNF if every determinant is a candidate key.
- Recall that not all determinants are keys.
- Those determinants that are keys we initially call *candidate keys*.
- Eventually, we select a single candidate key to be *the key* for the relation.
- Consider the following example:
 - > Funds consist of one or more Investment Types.
 - Funds are managed by one or more Managers
 - Investment Types can have one more Managers
 - Managers only manage one type of investment.

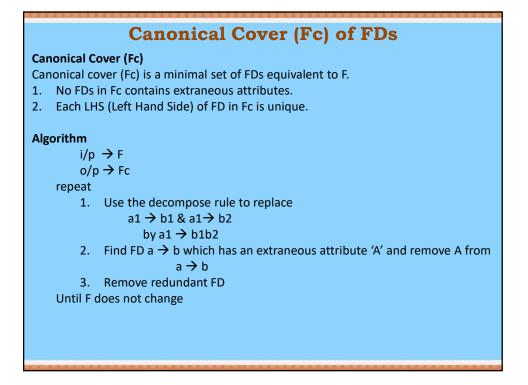
Relation: FUNDS (FundID, InvestmentType, Manager)

FD1: FundID, InvestmentType \rightarrow Manager FD2: FundID, Manager \rightarrow InvestmentType FD3: Manager \rightarrow InvestmentType

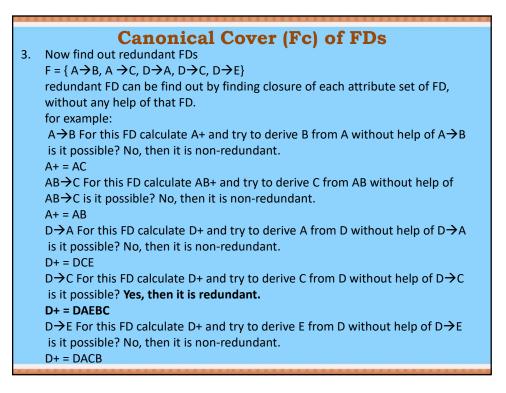
FundID	InvestmentType	Manager
99	Common Stock	Smith
99	Municipal Bonds	Jones
33	Common Stock	Green
22	Growth Stocks	Brown
11	Common Stock	Smith

	Normalization
•	In this case, the combination FundID and InvestmentType form a <i>candidate key</i> because we can use FundID,InvestmentType to uniquely identify a tuple in the relation.
•	Similarly, the combination FundID and Manager also form a <i>candidate key</i> because we can use FundID, Manager to uniquely identify a tuple. Manager by itself is not a candidate key because we cannot use Manager alone to uniquely identify a tuple in the relation.
•	 Is this relation FUNDS(FundID, InvestmentType, Manager) in 1NF, 2NF or 3NF ? Given we pick FundID, InvestmentType as the <i>Primary Key</i>: ✓ 1NF for sure. ✓ 2NF because all of the non-key attributes (Manager) is dependent on all of the key.
	 ✓ 3NF because there are no transitive dependencies.
-	However consider what happens if we delete the tuple with FundID 22. We loose the fact that Brown manages the InvestmentType "Growth Stocks."

 Normalization For our example:FUNDS (FundID, InvestmentType, Manager) The determinants are:FundID, InvestmentType FundID, Manager Manager Which determinants can act as keys? FundID, InvestmentType YES FundID, Manager YES Manager NO Create a new relation from the functional dependency: 						
MANAGERS(<u>Manager</u> , InvestmentType), FUND_MANAGERS(<u>FundID</u> , <u>Manager</u>)						
In this last step, we have retained the determinant "Manager" in the original relation MANAGERS. Each of the new relations should be checked to ensure they meet the definitions of 1NF, 2NF, 3NF and BCNF						
	FundID	Manager		InvestmentType	Manager	
	99	Smith		Common Stock	Smith	
	99	Jones		Municipal Bonds	Jones	
	33	Green		Common Stock	Green	
	22	Brown		Growth Stocks	Brown	
	11	Smith		Common Stock	Smith	
			1.1.2.2.2		a a a a a a	


Normalization
Fourth Normal Form (4NF)
A relation is in fourth normal form if it is in BCNF and it contains no multivalued
dependencies.
Multivalued Dependency: A type of functional dependency where the determinant
can determine more than one value.
More formally, there are 3 criteria:
• There must be at least 3 attributes in the relation. call them A, B, and C, for
example.
 Given A, one can determine multiple values of B.
 Given A, one can determine multiple values of C.
 B and C are independent of one another.
Book example:
Student has one or more majors.
Student participates in one or more activities.
FD1: StudentID $\rightarrow \rightarrow$ Major
FD2: StudentID $\rightarrow \rightarrow$ Activities

 Normalization A few characteristics: No regular functional dependencies All three attributes taken together form the key. Later two attributes are independent of one another. Insertion anomaly: Cannot add a stock fund without adding a bond fund (NULL Value). Must always maintain the combinations to preserve the meaning. Stock Fund and Bond Fund form a multivalued dependency on Portfolio ID. PortfolioID → Stock Fund PortfolioID → Bond Fund 				
	Portfolioli	$D \rightarrow \rightarrow$ Bond Fund		
	Portfolio ID	•••••	Bond Fund	
		•••••	Bond Fund Municipal Bonds	
	Portfolio ID	Stock Fund		
	Portfolio ID 999	Stock Fund Janus Fund	Municipal Bonds Dreyfus Short-Intermediate Municipal Bond Fund	
	Portfolio ID 999 999	Stock Fund Janus Fund Janus Fund	Municipal Bonds Dreyfus Short-Intermediate Municipal Bond Fund Municipal Bonds	


Prepared by: Dr. Mukesh Bathre

Normalization Resolution: Split into two tables with the common key:		
DID Stock Fund	l	
Janus Fund		
Scudder Global Fund		
Kaufmann Fund		
DID Bond Fund		
Municipal Bonds		
Dreyfus Short-Interm	ediate Municipal Bond Fund	
T. Rowe Price Emergir	ng Markets Bond Fund	
	ID Stock Fund Janus Fund Scudder Global Fund Kaufmann Fund ID Bond Fund Municipal Bonds Dreyfus Short-Intermed	ID Stock Fund Janus Fund Scudder Global Fund Kaufmann Fund

Normalization
 Fifth Normal Form (5NF) Also called "Projection Join" Normal form. There are certain conditions under which after decomposing a relation, it cannot
be reassembled back into its original form.

Canonical Cover (Fc) of FDs
Steps to find out Canonical Cover (Fc)
1. Singleton RHS (Right Hand Side)
2. Removal of extraneous attribute
3. Removal of Redundant FD
Consider two sets of FDs
$F = \{ A \rightarrow B, AB \rightarrow C, D \rightarrow AC, D \rightarrow E \}$
$G= \{ A \rightarrow BC, D \rightarrow AB \}$
Which one is true?
a) F covers G
b) G covers F
c) F & G are equal
d) None
Let us consider first set of FDs F = { $A \rightarrow B$, AB $\rightarrow C$, $D \rightarrow AC$, $D \rightarrow E$ }
1. Here given $D \rightarrow AC$ apply decompose rule $D \rightarrow A$, $D \rightarrow C$
2. After this FDs are F = { $A \rightarrow B$, AB $\rightarrow C$, $D \rightarrow A$, $D \rightarrow C$, $D \rightarrow E$ }
Only one FD is a partial FD AB \rightarrow C where B is extraneous. Because, A+ = AB & B+
= B.

	Canonical Cover (Fc) of FDs
Her	ice Fc for given FD set F = { A→B, A →C, D→A, D→C, D→E} is
Fc =	$\{A \rightarrow B, A \rightarrow C, D \rightarrow A, D \rightarrow E\}$
Sim	ilarly, we'll consider G = { $A \rightarrow BC$, $D \rightarrow AB$ }
1.	Here given $A \rightarrow BC$, $D \rightarrow AB$ apply decompose rule $A \rightarrow B$, $A \rightarrow C$, $D \rightarrow A$, $D \rightarrow B$
2.	After this FDs are G = { $A \rightarrow B$, $A \rightarrow C$, $D \rightarrow A$, $D \rightarrow B$ }
	Here, No FD has extraneous attribute. Follow third step
3.	Now find out redundant FDs
5.	$G = \{A \rightarrow B, A \rightarrow C, D \rightarrow A, D \rightarrow B\}$
	$A \rightarrow B$ For this FD calculate A+ and try to derive B from A without help of $A \rightarrow B$
	is it possible? No, then it is non-redundant.
	A+ = AC
	AB \rightarrow C For this FD calculate AB+ and try to derive C from AB without help of
	$AB \rightarrow C$ is it possible? No, then it is non-redundant.
	A+ = AB
	$D \rightarrow A$ For this FD calculate D+ and try to derive A from D without help of $D \rightarrow A$
	is it possible? No, then it is non-redundant.
	D+ = DB
	$D \rightarrow B$ For this FD calculate D+ and try to derive C from D without help of $D \rightarrow B$
	is it possible? Yes, then it is redundant.
	D+ = DABC

Canonical Cover (Fc) of FDs Hence Gc for given FD set $G = \{A \rightarrow B, A \rightarrow C, D \rightarrow A, D \rightarrow B\}$ is $Gc = \{A \rightarrow B, A \rightarrow C, D \rightarrow A\}$ Now, Compare Fc and Gc Fc = $\{A \rightarrow B, A \rightarrow C, D \rightarrow A, D \rightarrow E\}$ Gc = $\{A \rightarrow B, A \rightarrow C, D \rightarrow A\}$ a) F covers G b) G covers F c) F & G are equal d) None Answer is d) None